
CSE 451: Operating Systems

Winter 2023

Module 10

Deadlock

Gary Kimura

2

3

Definition

• A thread is deadlocked when it’s waiting for an event
that can never occur
– I’m waiting for you to clear the intersection, so I can proceed

• but you can’t move until he moves, and he can’t move until she
moves, and she can’t move until I move

– Thread A is in critical section 1, waiting for access to critical
section 2; thread B is in critical section 2, waiting for access
to critical section 1

– I’m trying to book a vacation package to Tahiti – air
transportation, ground transportation, hotel, side-trips. It’s
all-or-nothing – one high-level transaction – with the four
databases locked in that order. You’re trying to do the same
thing in the opposite order.

4

Four conditions must exist
for deadlock to be possible

1. Mutual Exclusion

2. Hold and Wait

3. No Preemption

4. Circular Wait

We’ll see that deadlocks can be addressed by
attacking any of these four conditions.

5

Resource Graphs

• Resource graphs are a way to visualize the
(deadlock-related) state of the threads, and to
reason about deadlock

T1 T2 T3

Resources

Threads

• 1 or more identical units of a resource are available
• A thread may hold resources (arrows to threads)
• A thread may request resources (arrows from threads)

T4

6

Deadlock

• A deadlock exists if there is an irreducible cycle in the
resource graph (such as the one above)

7

Graph reduction

• A graph can be reduced by a thread if all of that
thread’s requests can be granted
– in this case, the thread eventually will terminate – all

resources are freed – all arcs (allocations) to/from it in the
graph are deleted

• Miscellaneous theorems (Holt, Havender):
– There are no deadlocked threads iff the graph is completely

reducible

– The order of reductions is irrelevant

© 2012 Gribble 8

Resource allocation graph with no cycle

Silberschatz, Galvin and Gagne 2002

What would cause a
deadlock?

© 2012 Gribble 9

Resource allocation graph with a deadlock

Silberschatz, Galvin and Gagne 2002

© 2012 Gribble 10

Resource allocation graph with a cycle
but no deadlock

Silberschatz, Galvin and Gagne 2002

11

Handling Deadlock

• Eliminate one of the four required conditions
– Mutual Exclusion

• Clearly we’re not going to eliminate this one!

– Hold and Wait

– No Preemption

– Circular Wait

• Broadly classified as:
– Prevention, or

– Avoidance, or

– Detection (and recovery)

12

Prevention

Applications must conform to behaviors guaranteed not
to deadlock

• Eliminating hold and wait
• each thread obtains all resources at the beginning

• blocks until all are available
• drawback?

• Eliminating circular wait
• resources are numbered

• each thread obtains resources in sequence order (which
could require acquiring some before they are actually
needed)
• why does this work?

• pros and cons?

13

Avoidance

Less severe restrictions on program behavior

• Eliminating circular wait
– each thread states its maximum claim for every resource

type.

– system runs the Banker’s Algorithm at each allocation
request
• Banker incredibly conservative

• if I were to allocate you that resource, and then everyone were
to request their maximum claim for every resource, could I find
a way to allocate remaining resources so that everyone
finished?

– More on this in a moment…

14

• Every once in a while, check to see if there’s a
deadlock
– how?

• Identify stuck threads

• Look for cycles

• Don’t get spoofed

• If so, eliminate it
– how?

• Reboot?

• Choose a victim to restart

Detect and recover

15

Avoidance: Banker’s Algorithm example

• Background
– The set of controlled resources is known to the system

– The number of units of each resource is known to the
system

– Each application must declare its maximum possible
requirement of each resource type

• Then, the system can do the following:
– When a request is made

• pretend you granted it

• pretend all other legal requests were made

• can the graph be reduced?
– if so, allocate the requested resource

– if not, block the thread until some thread releases resources, and
then try pretending again

16

Current practice

• Microsoft SQL Server
– “The SQL Server Database Engine automatically detects

deadlock cycles within SQL Server. The Database Engine
chooses one of the sessions as a deadlock victim and the
current transaction is terminated with an error to break the
deadlock.”

• Oracle
– As Microsoft SQL Server, plus “Multitable deadlocks can

usually be avoided if transactions accessing the same tables
lock those tables in the same order... For example, all
application developers might follow the rule that when both a
master and detail table are updated, the master table is
locked first and then the detail table.”

17

• Windows internals (Linux no different)
– “The Windows NT kernel architecture is a deadlock

minefield. With the multi-threaded re-entrant kernel there is
plenty of deadlock potential.”

– “Lock ordering is great in theory, and NT was originally
designed with mutex levels, but they had to be abandoned.
Inside the NT kernel there is a lot of interaction between
memory management, the cache manager, and the file
systems, and plenty of situations where memory
management (maybe under the guise of its modified page
writer) acquires its lock and then calls the cache manager.
This happens while the file system calls the cache manager
to fill the cache which in turn goes through the memory
manager to fault in its page. And the list goes on.”

18

Summary

• Deadlock is bad!

• We can deal with it either statically (prevention) or
dynamically (avoidance and/or detection)

• In practice, you’ll encounter lock ordering, periodic
deadlock detection/correction, and minefields

• Lock granularity can make life easier or harder.

Debugging deadlocks
What’s in our favor

• Once the system is deadlock, it doesn’t go away.
That is, you can slowly and painfully walk through all
the locks on the system and all the threads on the
system and see what each thread owns and what it is
waiting on.

• This does require the ability to identify the owner(s) of
a lock. Having their return address when they
acquired the lock also helps.

• Once you draw the graph. You have the deadlock.

• Often the harder part is figuring out how to avoid the
deadlock.

2/16/2023 19

Debugging Deadlocks
What didn’t work well

• Mutex levels. In theory they avoided deadlocks but in
practice they were too cumbersome to use, and
deadlocks were still possible when mixed with other
kinds of locks.

2/16/2023 20

21

Debugging Deadlocks
Summary

• In the Windows Kernel deadlock avoidance was the
strategy taken.

• Slowly, most deadlocks have been eliminated, but
there are probably still some unusual situations
where deadlocks can still occur.

• Don’t confuse starvation with deadlocks.

• Using Monitors and Condition Variables does not
prevent deadlocks.

